Skip to content

pydantic_ai.mcp

MCPError

Bases: RuntimeError

Raised when an MCP server returns an error response.

This exception wraps error responses from MCP servers, following the ErrorData schema from the MCP specification.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
class MCPError(RuntimeError):
    """Raised when an MCP server returns an error response.

    This exception wraps error responses from MCP servers, following the ErrorData schema
    from the MCP specification.
    """

    message: str
    """The error message."""

    code: int
    """The error code returned by the server."""

    data: dict[str, Any] | None
    """Additional information about the error, if provided by the server."""

    def __init__(self, message: str, code: int, data: dict[str, Any] | None = None):
        self.message = message
        self.code = code
        self.data = data
        super().__init__(message)

    @classmethod
    def from_mcp_sdk(cls, error: mcp_exceptions.McpError) -> MCPError:
        """Create an MCPError from an MCP SDK McpError.

        Args:
            error: An McpError from the MCP SDK.
        """
        # Extract error data from the McpError.error attribute
        error_data = error.error
        return cls(message=error_data.message, code=error_data.code, data=error_data.data)

    def __str__(self) -> str:
        if self.data:
            return f'{self.message} (code: {self.code}, data: {self.data})'
        return f'{self.message} (code: {self.code})'

message instance-attribute

message: str = message

The error message.

code instance-attribute

code: int = code

The error code returned by the server.

data instance-attribute

data: dict[str, Any] | None = data

Additional information about the error, if provided by the server.

from_mcp_sdk classmethod

from_mcp_sdk(error: McpError) -> MCPError

Create an MCPError from an MCP SDK McpError.

Parameters:

Name Type Description Default
error McpError

An McpError from the MCP SDK.

required
Source code in pydantic_ai_slim/pydantic_ai/mcp.py
85
86
87
88
89
90
91
92
93
94
@classmethod
def from_mcp_sdk(cls, error: mcp_exceptions.McpError) -> MCPError:
    """Create an MCPError from an MCP SDK McpError.

    Args:
        error: An McpError from the MCP SDK.
    """
    # Extract error data from the McpError.error attribute
    error_data = error.error
    return cls(message=error_data.message, code=error_data.code, data=error_data.data)

ResourceAnnotations dataclass

Additional properties describing MCP entities.

See the resource annotations in the MCP specification.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
@dataclass(repr=False, kw_only=True)
class ResourceAnnotations:
    """Additional properties describing MCP entities.

    See the [resource annotations in the MCP specification](https://modelcontextprotocol.io/specification/2025-06-18/server/resources#annotations).
    """

    audience: list[mcp_types.Role] | None = None
    """Intended audience for this entity."""

    priority: Annotated[float, Field(ge=0.0, le=1.0)] | None = None
    """Priority level for this entity, ranging from 0.0 to 1.0."""

    __repr__ = _utils.dataclasses_no_defaults_repr

    @classmethod
    def from_mcp_sdk(cls, mcp_annotations: mcp_types.Annotations) -> ResourceAnnotations:
        """Convert from MCP SDK Annotations to ResourceAnnotations.

        Args:
            mcp_annotations: The MCP SDK annotations object.
        """
        return cls(audience=mcp_annotations.audience, priority=mcp_annotations.priority)

audience class-attribute instance-attribute

audience: list[Role] | None = None

Intended audience for this entity.

priority class-attribute instance-attribute

priority: Annotated[float, Field(ge=0.0, le=1.0)] | None = (
    None
)

Priority level for this entity, ranging from 0.0 to 1.0.

from_mcp_sdk classmethod

from_mcp_sdk(
    mcp_annotations: Annotations,
) -> ResourceAnnotations

Convert from MCP SDK Annotations to ResourceAnnotations.

Parameters:

Name Type Description Default
mcp_annotations Annotations

The MCP SDK annotations object.

required
Source code in pydantic_ai_slim/pydantic_ai/mcp.py
117
118
119
120
121
122
123
124
@classmethod
def from_mcp_sdk(cls, mcp_annotations: mcp_types.Annotations) -> ResourceAnnotations:
    """Convert from MCP SDK Annotations to ResourceAnnotations.

    Args:
        mcp_annotations: The MCP SDK annotations object.
    """
    return cls(audience=mcp_annotations.audience, priority=mcp_annotations.priority)

Resource dataclass

Bases: BaseResource

A resource that can be read from an MCP server.

See the resources in the MCP specification.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
@dataclass(repr=False, kw_only=True)
class Resource(BaseResource):
    """A resource that can be read from an MCP server.

    See the [resources in the MCP specification](https://modelcontextprotocol.io/specification/2025-06-18/server/resources).
    """

    uri: str
    """The URI of the resource."""

    size: int | None = None
    """The size of the raw resource content in bytes (before base64 encoding), if known."""

    @classmethod
    def from_mcp_sdk(cls, mcp_resource: mcp_types.Resource) -> Resource:
        """Convert from MCP SDK Resource to PydanticAI Resource.

        Args:
            mcp_resource: The MCP SDK Resource object.
        """
        return cls(
            uri=str(mcp_resource.uri),
            name=mcp_resource.name,
            title=mcp_resource.title,
            description=mcp_resource.description,
            mime_type=mcp_resource.mimeType,
            size=mcp_resource.size,
            annotations=ResourceAnnotations.from_mcp_sdk(mcp_resource.annotations)
            if mcp_resource.annotations
            else None,
            metadata=mcp_resource.meta,
        )

uri instance-attribute

uri: str

The URI of the resource.

size class-attribute instance-attribute

size: int | None = None

The size of the raw resource content in bytes (before base64 encoding), if known.

from_mcp_sdk classmethod

from_mcp_sdk(mcp_resource: Resource) -> Resource

Convert from MCP SDK Resource to PydanticAI Resource.

Parameters:

Name Type Description Default
mcp_resource Resource

The MCP SDK Resource object.

required
Source code in pydantic_ai_slim/pydantic_ai/mcp.py
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
@classmethod
def from_mcp_sdk(cls, mcp_resource: mcp_types.Resource) -> Resource:
    """Convert from MCP SDK Resource to PydanticAI Resource.

    Args:
        mcp_resource: The MCP SDK Resource object.
    """
    return cls(
        uri=str(mcp_resource.uri),
        name=mcp_resource.name,
        title=mcp_resource.title,
        description=mcp_resource.description,
        mime_type=mcp_resource.mimeType,
        size=mcp_resource.size,
        annotations=ResourceAnnotations.from_mcp_sdk(mcp_resource.annotations)
        if mcp_resource.annotations
        else None,
        metadata=mcp_resource.meta,
    )

ResourceTemplate dataclass

Bases: BaseResource

A template for parameterized resources on an MCP server.

See the resource templates in the MCP specification.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
@dataclass(repr=False, kw_only=True)
class ResourceTemplate(BaseResource):
    """A template for parameterized resources on an MCP server.

    See the [resource templates in the MCP specification](https://modelcontextprotocol.io/specification/2025-06-18/server/resources#resource-templates).
    """

    uri_template: str
    """URI template (RFC 6570) for constructing resource URIs."""

    @classmethod
    def from_mcp_sdk(cls, mcp_template: mcp_types.ResourceTemplate) -> ResourceTemplate:
        """Convert from MCP SDK ResourceTemplate to PydanticAI ResourceTemplate.

        Args:
            mcp_template: The MCP SDK ResourceTemplate object.
        """
        return cls(
            uri_template=mcp_template.uriTemplate,
            name=mcp_template.name,
            title=mcp_template.title,
            description=mcp_template.description,
            mime_type=mcp_template.mimeType,
            annotations=ResourceAnnotations.from_mcp_sdk(mcp_template.annotations)
            if mcp_template.annotations
            else None,
            metadata=mcp_template.meta,
        )

uri_template instance-attribute

uri_template: str

URI template (RFC 6570) for constructing resource URIs.

from_mcp_sdk classmethod

from_mcp_sdk(
    mcp_template: ResourceTemplate,
) -> ResourceTemplate

Convert from MCP SDK ResourceTemplate to PydanticAI ResourceTemplate.

Parameters:

Name Type Description Default
mcp_template ResourceTemplate

The MCP SDK ResourceTemplate object.

required
Source code in pydantic_ai_slim/pydantic_ai/mcp.py
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
@classmethod
def from_mcp_sdk(cls, mcp_template: mcp_types.ResourceTemplate) -> ResourceTemplate:
    """Convert from MCP SDK ResourceTemplate to PydanticAI ResourceTemplate.

    Args:
        mcp_template: The MCP SDK ResourceTemplate object.
    """
    return cls(
        uri_template=mcp_template.uriTemplate,
        name=mcp_template.name,
        title=mcp_template.title,
        description=mcp_template.description,
        mime_type=mcp_template.mimeType,
        annotations=ResourceAnnotations.from_mcp_sdk(mcp_template.annotations)
        if mcp_template.annotations
        else None,
        metadata=mcp_template.meta,
    )

ServerCapabilities dataclass

Capabilities that an MCP server supports.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
@dataclass(repr=False, kw_only=True)
class ServerCapabilities:
    """Capabilities that an MCP server supports."""

    experimental: list[str] | None = None
    """Experimental, non-standard capabilities that the server supports."""

    logging: bool = False
    """Whether the server supports sending log messages to the client."""

    prompts: bool = False
    """Whether the server offers any prompt templates."""

    resources: bool = False
    """Whether the server offers any resources to read."""

    tools: bool = False
    """Whether the server offers any tools to call."""

    completions: bool = False
    """Whether the server offers autocompletion suggestions for prompts and resources."""

    __repr__ = _utils.dataclasses_no_defaults_repr

    @classmethod
    def from_mcp_sdk(cls, mcp_capabilities: mcp_types.ServerCapabilities) -> ServerCapabilities:
        """Convert from MCP SDK ServerCapabilities to PydanticAI ServerCapabilities.

        Args:
            mcp_capabilities: The MCP SDK ServerCapabilities object.
        """
        return cls(
            experimental=list(mcp_capabilities.experimental.keys()) if mcp_capabilities.experimental else None,
            logging=mcp_capabilities.logging is not None,
            prompts=mcp_capabilities.prompts is not None,
            resources=mcp_capabilities.resources is not None,
            tools=mcp_capabilities.tools is not None,
            completions=mcp_capabilities.completions is not None,
        )

experimental class-attribute instance-attribute

experimental: list[str] | None = None

Experimental, non-standard capabilities that the server supports.

logging class-attribute instance-attribute

logging: bool = False

Whether the server supports sending log messages to the client.

prompts class-attribute instance-attribute

prompts: bool = False

Whether the server offers any prompt templates.

resources class-attribute instance-attribute

resources: bool = False

Whether the server offers any resources to read.

tools class-attribute instance-attribute

tools: bool = False

Whether the server offers any tools to call.

completions class-attribute instance-attribute

completions: bool = False

Whether the server offers autocompletion suggestions for prompts and resources.

from_mcp_sdk classmethod

from_mcp_sdk(
    mcp_capabilities: ServerCapabilities,
) -> ServerCapabilities

Convert from MCP SDK ServerCapabilities to PydanticAI ServerCapabilities.

Parameters:

Name Type Description Default
mcp_capabilities ServerCapabilities

The MCP SDK ServerCapabilities object.

required
Source code in pydantic_ai_slim/pydantic_ai/mcp.py
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
@classmethod
def from_mcp_sdk(cls, mcp_capabilities: mcp_types.ServerCapabilities) -> ServerCapabilities:
    """Convert from MCP SDK ServerCapabilities to PydanticAI ServerCapabilities.

    Args:
        mcp_capabilities: The MCP SDK ServerCapabilities object.
    """
    return cls(
        experimental=list(mcp_capabilities.experimental.keys()) if mcp_capabilities.experimental else None,
        logging=mcp_capabilities.logging is not None,
        prompts=mcp_capabilities.prompts is not None,
        resources=mcp_capabilities.resources is not None,
        tools=mcp_capabilities.tools is not None,
        completions=mcp_capabilities.completions is not None,
    )

MCPServer

Bases: AbstractToolset[Any], ABC

Base class for attaching agents to MCP servers.

See https://modelcontextprotocol.io for more information.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
class MCPServer(AbstractToolset[Any], ABC):
    """Base class for attaching agents to MCP servers.

    See <https://modelcontextprotocol.io> for more information.
    """

    tool_prefix: str | None
    """A prefix to add to all tools that are registered with the server.

    If not empty, will include a trailing underscore(`_`).

    e.g. if `tool_prefix='foo'`, then a tool named `bar` will be registered as `foo_bar`
    """

    log_level: mcp_types.LoggingLevel | None
    """The log level to set when connecting to the server, if any.

    See <https://modelcontextprotocol.io/specification/2025-03-26/server/utilities/logging#logging> for more details.

    If `None`, no log level will be set.
    """

    log_handler: LoggingFnT | None
    """A handler for logging messages from the server."""

    timeout: float
    """The timeout in seconds to wait for the client to initialize."""

    read_timeout: float
    """Maximum time in seconds to wait for new messages before timing out.

    This timeout applies to the long-lived connection after it's established.
    If no new messages are received within this time, the connection will be considered stale
    and may be closed. Defaults to 5 minutes (300 seconds).
    """

    process_tool_call: ProcessToolCallback | None
    """Hook to customize tool calling and optionally pass extra metadata."""

    allow_sampling: bool
    """Whether to allow MCP sampling through this client."""

    sampling_model: models.Model | None
    """The model to use for sampling."""

    max_retries: int
    """The maximum number of times to retry a tool call."""

    elicitation_callback: ElicitationFnT | None = None
    """Callback function to handle elicitation requests from the server."""

    _id: str | None

    _enter_lock: Lock = field(compare=False)
    _running_count: int
    _exit_stack: AsyncExitStack | None

    _client: ClientSession
    _read_stream: MemoryObjectReceiveStream[SessionMessage | Exception]
    _write_stream: MemoryObjectSendStream[SessionMessage]
    _server_info: mcp_types.Implementation
    _server_capabilities: ServerCapabilities
    _instructions: str | None

    def __init__(
        self,
        tool_prefix: str | None = None,
        log_level: mcp_types.LoggingLevel | None = None,
        log_handler: LoggingFnT | None = None,
        timeout: float = 5,
        read_timeout: float = 5 * 60,
        process_tool_call: ProcessToolCallback | None = None,
        allow_sampling: bool = True,
        sampling_model: models.Model | None = None,
        max_retries: int = 1,
        elicitation_callback: ElicitationFnT | None = None,
        *,
        id: str | None = None,
    ):
        self.tool_prefix = tool_prefix
        self.log_level = log_level
        self.log_handler = log_handler
        self.timeout = timeout
        self.read_timeout = read_timeout
        self.process_tool_call = process_tool_call
        self.allow_sampling = allow_sampling
        self.sampling_model = sampling_model
        self.max_retries = max_retries
        self.elicitation_callback = elicitation_callback

        self._id = id or tool_prefix

        self.__post_init__()

    def __post_init__(self):
        self._enter_lock = Lock()
        self._running_count = 0
        self._exit_stack = None

    @abstractmethod
    @asynccontextmanager
    async def client_streams(
        self,
    ) -> AsyncIterator[
        tuple[
            MemoryObjectReceiveStream[SessionMessage | Exception],
            MemoryObjectSendStream[SessionMessage],
        ]
    ]:
        """Create the streams for the MCP server."""
        raise NotImplementedError('MCP Server subclasses must implement this method.')
        yield

    @property
    def id(self) -> str | None:
        return self._id

    @id.setter
    def id(self, value: str | None):
        self._id = value

    @property
    def label(self) -> str:
        if self.id:
            return super().label  # pragma: no cover
        else:
            return repr(self)

    @property
    def tool_name_conflict_hint(self) -> str:
        return 'Set the `tool_prefix` attribute to avoid name conflicts.'

    @property
    def server_info(self) -> mcp_types.Implementation:
        """Access the information send by the MCP server during initialization."""
        if getattr(self, '_server_info', None) is None:
            raise AttributeError(
                f'The `{self.__class__.__name__}.server_info` is only instantiated after initialization.'
            )
        return self._server_info

    @property
    def capabilities(self) -> ServerCapabilities:
        """Access the capabilities advertised by the MCP server during initialization."""
        if getattr(self, '_server_capabilities', None) is None:
            raise AttributeError(
                f'The `{self.__class__.__name__}.capabilities` is only instantiated after initialization.'
            )
        return self._server_capabilities

    @property
    def instructions(self) -> str | None:
        """Access the instructions sent by the MCP server during initialization."""
        if not hasattr(self, '_instructions'):
            raise AttributeError(
                f'The `{self.__class__.__name__}.instructions` is only available after initialization.'
            )
        return self._instructions

    async def list_tools(self) -> list[mcp_types.Tool]:
        """Retrieve tools that are currently active on the server.

        Note:
        - We don't cache tools as they might change.
        - We also don't subscribe to the server to avoid complexity.
        """
        async with self:  # Ensure server is running
            result = await self._client.list_tools()
        return result.tools

    async def direct_call_tool(
        self,
        name: str,
        args: dict[str, Any],
        metadata: dict[str, Any] | None = None,
    ) -> ToolResult:
        """Call a tool on the server.

        Args:
            name: The name of the tool to call.
            args: The arguments to pass to the tool.
            metadata: Request-level metadata (optional)

        Returns:
            The result of the tool call.

        Raises:
            ModelRetry: If the tool call fails.
        """
        async with self:  # Ensure server is running
            try:
                result = await self._client.send_request(
                    mcp_types.ClientRequest(
                        mcp_types.CallToolRequest(
                            method='tools/call',
                            params=mcp_types.CallToolRequestParams(
                                name=name,
                                arguments=args,
                                _meta=mcp_types.RequestParams.Meta(**metadata) if metadata else None,
                            ),
                        )
                    ),
                    mcp_types.CallToolResult,
                )
            except mcp_exceptions.McpError as e:
                raise exceptions.ModelRetry(e.error.message)

        if result.isError:
            message: str | None = None
            if result.content:  # pragma: no branch
                text_parts = [part.text for part in result.content if isinstance(part, mcp_types.TextContent)]
                message = '\n'.join(text_parts)

            raise exceptions.ModelRetry(message or 'MCP tool call failed')

        # Prefer structured content if there are only text parts, which per the docs would contain the JSON-encoded structured content for backward compatibility.
        # See https://github.com/modelcontextprotocol/python-sdk#structured-output
        if (structured := result.structuredContent) and not any(
            not isinstance(part, mcp_types.TextContent) for part in result.content
        ):
            # The MCP SDK wraps primitives and generic types like list in a `result` key, but we want to use the raw value returned by the tool function.
            # See https://github.com/modelcontextprotocol/python-sdk#structured-output
            if isinstance(structured, dict) and len(structured) == 1 and 'result' in structured:
                return structured['result']
            return structured

        mapped = [await self._map_tool_result_part(part) for part in result.content]
        return mapped[0] if len(mapped) == 1 else mapped

    async def call_tool(
        self,
        name: str,
        tool_args: dict[str, Any],
        ctx: RunContext[Any],
        tool: ToolsetTool[Any],
    ) -> ToolResult:
        if self.tool_prefix:
            name = name.removeprefix(f'{self.tool_prefix}_')
            ctx = replace(ctx, tool_name=name)

        if self.process_tool_call is not None:
            return await self.process_tool_call(ctx, self.direct_call_tool, name, tool_args)
        else:
            return await self.direct_call_tool(name, tool_args)

    async def get_tools(self, ctx: RunContext[Any]) -> dict[str, ToolsetTool[Any]]:
        return {
            name: self.tool_for_tool_def(
                ToolDefinition(
                    name=name,
                    description=mcp_tool.description,
                    parameters_json_schema=mcp_tool.inputSchema,
                    metadata={
                        'meta': mcp_tool.meta,
                        'annotations': mcp_tool.annotations.model_dump() if mcp_tool.annotations else None,
                        'output_schema': mcp_tool.outputSchema or None,
                    },
                ),
            )
            for mcp_tool in await self.list_tools()
            if (name := f'{self.tool_prefix}_{mcp_tool.name}' if self.tool_prefix else mcp_tool.name)
        }

    def tool_for_tool_def(self, tool_def: ToolDefinition) -> ToolsetTool[Any]:
        return ToolsetTool(
            toolset=self,
            tool_def=tool_def,
            max_retries=self.max_retries,
            args_validator=TOOL_SCHEMA_VALIDATOR,
        )

    async def list_resources(self) -> list[Resource]:
        """Retrieve resources that are currently present on the server.

        Note:
        - We don't cache resources as they might change.
        - We also don't subscribe to resource changes to avoid complexity.

        Raises:
            MCPError: If the server returns an error.
        """
        async with self:  # Ensure server is running
            if not self.capabilities.resources:
                return []
            try:
                result = await self._client.list_resources()
            except mcp_exceptions.McpError as e:
                raise MCPError.from_mcp_sdk(e) from e
        return [Resource.from_mcp_sdk(r) for r in result.resources]

    async def list_resource_templates(self) -> list[ResourceTemplate]:
        """Retrieve resource templates that are currently present on the server.

        Raises:
            MCPError: If the server returns an error.
        """
        async with self:  # Ensure server is running
            if not self.capabilities.resources:
                return []
            try:
                result = await self._client.list_resource_templates()
            except mcp_exceptions.McpError as e:
                raise MCPError.from_mcp_sdk(e) from e
        return [ResourceTemplate.from_mcp_sdk(t) for t in result.resourceTemplates]

    @overload
    async def read_resource(self, uri: str) -> str | messages.BinaryContent | list[str | messages.BinaryContent]: ...

    @overload
    async def read_resource(
        self, uri: Resource
    ) -> str | messages.BinaryContent | list[str | messages.BinaryContent]: ...

    async def read_resource(
        self, uri: str | Resource
    ) -> str | messages.BinaryContent | list[str | messages.BinaryContent]:
        """Read the contents of a specific resource by URI.

        Args:
            uri: The URI of the resource to read, or a Resource object.

        Returns:
            The resource contents. If the resource has a single content item, returns that item directly.
            If the resource has multiple content items, returns a list of items.

        Raises:
            MCPError: If the server returns an error.
        """
        resource_uri = uri if isinstance(uri, str) else uri.uri
        async with self:  # Ensure server is running
            try:
                result = await self._client.read_resource(AnyUrl(resource_uri))
            except mcp_exceptions.McpError as e:
                raise MCPError.from_mcp_sdk(e) from e

        return (
            self._get_content(result.contents[0])
            if len(result.contents) == 1
            else [self._get_content(resource) for resource in result.contents]
        )

    async def __aenter__(self) -> Self:
        """Enter the MCP server context.

        This will initialize the connection to the server.
        If this server is an [`MCPServerStdio`][pydantic_ai.mcp.MCPServerStdio], the server will first be started as a subprocess.

        This is a no-op if the MCP server has already been entered.
        """
        async with self._enter_lock:
            if self._running_count == 0:
                async with AsyncExitStack() as exit_stack:
                    self._read_stream, self._write_stream = await exit_stack.enter_async_context(self.client_streams())
                    client = ClientSession(
                        read_stream=self._read_stream,
                        write_stream=self._write_stream,
                        sampling_callback=self._sampling_callback if self.allow_sampling else None,
                        elicitation_callback=self.elicitation_callback,
                        logging_callback=self.log_handler,
                        read_timeout_seconds=timedelta(seconds=self.read_timeout),
                    )
                    self._client = await exit_stack.enter_async_context(client)

                    with anyio.fail_after(self.timeout):
                        result = await self._client.initialize()
                        self._server_info = result.serverInfo
                        self._server_capabilities = ServerCapabilities.from_mcp_sdk(result.capabilities)
                        self._instructions = result.instructions
                        if log_level := self.log_level:
                            await self._client.set_logging_level(log_level)

                    self._exit_stack = exit_stack.pop_all()
            self._running_count += 1
        return self

    async def __aexit__(self, *args: Any) -> bool | None:
        if self._running_count == 0:
            raise ValueError('MCPServer.__aexit__ called more times than __aenter__')
        async with self._enter_lock:
            self._running_count -= 1
            if self._running_count == 0 and self._exit_stack is not None:
                await self._exit_stack.aclose()
                self._exit_stack = None

    @property
    def is_running(self) -> bool:
        """Check if the MCP server is running."""
        return bool(self._running_count)

    async def _sampling_callback(
        self, context: RequestContext[ClientSession, Any], params: mcp_types.CreateMessageRequestParams
    ) -> mcp_types.CreateMessageResult | mcp_types.ErrorData:
        """MCP sampling callback."""
        if self.sampling_model is None:
            raise ValueError('Sampling model is not set')  # pragma: no cover

        pai_messages = _mcp.map_from_mcp_params(params)
        model_settings = models.ModelSettings()
        if max_tokens := params.maxTokens:  # pragma: no branch
            model_settings['max_tokens'] = max_tokens
        if temperature := params.temperature:  # pragma: no branch
            model_settings['temperature'] = temperature
        if stop_sequences := params.stopSequences:  # pragma: no branch
            model_settings['stop_sequences'] = stop_sequences

        model_response = await model_request(self.sampling_model, pai_messages, model_settings=model_settings)
        return mcp_types.CreateMessageResult(
            role='assistant',
            content=_mcp.map_from_model_response(model_response),
            model=self.sampling_model.model_name,
        )

    async def _map_tool_result_part(
        self, part: mcp_types.ContentBlock
    ) -> str | messages.BinaryContent | dict[str, Any] | list[Any]:
        # See https://github.com/jlowin/fastmcp/blob/main/docs/servers/tools.mdx#return-values

        if isinstance(part, mcp_types.TextContent):
            text = part.text
            if text.startswith(('[', '{')):
                try:
                    return pydantic_core.from_json(text)
                except ValueError:
                    pass
            return text
        elif isinstance(part, mcp_types.ImageContent):
            return messages.BinaryContent(data=base64.b64decode(part.data), media_type=part.mimeType)
        elif isinstance(part, mcp_types.AudioContent):
            # NOTE: The FastMCP server doesn't support audio content.
            # See <https://github.com/modelcontextprotocol/python-sdk/issues/952> for more details.
            return messages.BinaryContent(
                data=base64.b64decode(part.data), media_type=part.mimeType
            )  # pragma: no cover
        elif isinstance(part, mcp_types.EmbeddedResource):
            resource = part.resource
            return self._get_content(resource)
        elif isinstance(part, mcp_types.ResourceLink):
            return await self.read_resource(str(part.uri))
        else:
            assert_never(part)

    def _get_content(
        self, resource: mcp_types.TextResourceContents | mcp_types.BlobResourceContents
    ) -> str | messages.BinaryContent:
        if isinstance(resource, mcp_types.TextResourceContents):
            return resource.text
        elif isinstance(resource, mcp_types.BlobResourceContents):
            return messages.BinaryContent(
                data=base64.b64decode(resource.blob), media_type=resource.mimeType or 'application/octet-stream'
            )
        else:
            assert_never(resource)

    def __eq__(self, value: object, /) -> bool:
        return isinstance(value, MCPServer) and self.id == value.id and self.tool_prefix == value.tool_prefix

tool_prefix instance-attribute

tool_prefix: str | None = tool_prefix

A prefix to add to all tools that are registered with the server.

If not empty, will include a trailing underscore(_).

e.g. if tool_prefix='foo', then a tool named bar will be registered as foo_bar

log_level instance-attribute

log_level: LoggingLevel | None = log_level

The log level to set when connecting to the server, if any.

See https://modelcontextprotocol.io/specification/2025-03-26/server/utilities/logging#logging for more details.

If None, no log level will be set.

log_handler instance-attribute

log_handler: LoggingFnT | None = log_handler

A handler for logging messages from the server.

timeout instance-attribute

timeout: float = timeout

The timeout in seconds to wait for the client to initialize.

read_timeout instance-attribute

read_timeout: float = read_timeout

Maximum time in seconds to wait for new messages before timing out.

This timeout applies to the long-lived connection after it's established. If no new messages are received within this time, the connection will be considered stale and may be closed. Defaults to 5 minutes (300 seconds).

process_tool_call instance-attribute

process_tool_call: ProcessToolCallback | None = (
    process_tool_call
)

Hook to customize tool calling and optionally pass extra metadata.

allow_sampling instance-attribute

allow_sampling: bool = allow_sampling

Whether to allow MCP sampling through this client.

sampling_model instance-attribute

sampling_model: Model | None = sampling_model

The model to use for sampling.

max_retries instance-attribute

max_retries: int = max_retries

The maximum number of times to retry a tool call.

elicitation_callback class-attribute instance-attribute

elicitation_callback: ElicitationFnT | None = (
    elicitation_callback
)

Callback function to handle elicitation requests from the server.

client_streams abstractmethod async

client_streams() -> AsyncIterator[
    tuple[
        MemoryObjectReceiveStream[
            SessionMessage | Exception
        ],
        MemoryObjectSendStream[SessionMessage],
    ]
]

Create the streams for the MCP server.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
370
371
372
373
374
375
376
377
378
379
380
381
382
@abstractmethod
@asynccontextmanager
async def client_streams(
    self,
) -> AsyncIterator[
    tuple[
        MemoryObjectReceiveStream[SessionMessage | Exception],
        MemoryObjectSendStream[SessionMessage],
    ]
]:
    """Create the streams for the MCP server."""
    raise NotImplementedError('MCP Server subclasses must implement this method.')
    yield

server_info property

server_info: Implementation

Access the information send by the MCP server during initialization.

capabilities property

capabilities: ServerCapabilities

Access the capabilities advertised by the MCP server during initialization.

instructions property

instructions: str | None

Access the instructions sent by the MCP server during initialization.

list_tools async

list_tools() -> list[Tool]

Retrieve tools that are currently active on the server.

Note: - We don't cache tools as they might change. - We also don't subscribe to the server to avoid complexity.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
430
431
432
433
434
435
436
437
438
439
async def list_tools(self) -> list[mcp_types.Tool]:
    """Retrieve tools that are currently active on the server.

    Note:
    - We don't cache tools as they might change.
    - We also don't subscribe to the server to avoid complexity.
    """
    async with self:  # Ensure server is running
        result = await self._client.list_tools()
    return result.tools

direct_call_tool async

direct_call_tool(
    name: str,
    args: dict[str, Any],
    metadata: dict[str, Any] | None = None,
) -> ToolResult

Call a tool on the server.

Parameters:

Name Type Description Default
name str

The name of the tool to call.

required
args dict[str, Any]

The arguments to pass to the tool.

required
metadata dict[str, Any] | None

Request-level metadata (optional)

None

Returns:

Type Description
ToolResult

The result of the tool call.

Raises:

Type Description
ModelRetry

If the tool call fails.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
async def direct_call_tool(
    self,
    name: str,
    args: dict[str, Any],
    metadata: dict[str, Any] | None = None,
) -> ToolResult:
    """Call a tool on the server.

    Args:
        name: The name of the tool to call.
        args: The arguments to pass to the tool.
        metadata: Request-level metadata (optional)

    Returns:
        The result of the tool call.

    Raises:
        ModelRetry: If the tool call fails.
    """
    async with self:  # Ensure server is running
        try:
            result = await self._client.send_request(
                mcp_types.ClientRequest(
                    mcp_types.CallToolRequest(
                        method='tools/call',
                        params=mcp_types.CallToolRequestParams(
                            name=name,
                            arguments=args,
                            _meta=mcp_types.RequestParams.Meta(**metadata) if metadata else None,
                        ),
                    )
                ),
                mcp_types.CallToolResult,
            )
        except mcp_exceptions.McpError as e:
            raise exceptions.ModelRetry(e.error.message)

    if result.isError:
        message: str | None = None
        if result.content:  # pragma: no branch
            text_parts = [part.text for part in result.content if isinstance(part, mcp_types.TextContent)]
            message = '\n'.join(text_parts)

        raise exceptions.ModelRetry(message or 'MCP tool call failed')

    # Prefer structured content if there are only text parts, which per the docs would contain the JSON-encoded structured content for backward compatibility.
    # See https://github.com/modelcontextprotocol/python-sdk#structured-output
    if (structured := result.structuredContent) and not any(
        not isinstance(part, mcp_types.TextContent) for part in result.content
    ):
        # The MCP SDK wraps primitives and generic types like list in a `result` key, but we want to use the raw value returned by the tool function.
        # See https://github.com/modelcontextprotocol/python-sdk#structured-output
        if isinstance(structured, dict) and len(structured) == 1 and 'result' in structured:
            return structured['result']
        return structured

    mapped = [await self._map_tool_result_part(part) for part in result.content]
    return mapped[0] if len(mapped) == 1 else mapped

list_resources async

list_resources() -> list[Resource]

Retrieve resources that are currently present on the server.

Note: - We don't cache resources as they might change. - We also don't subscribe to resource changes to avoid complexity.

Raises:

Type Description
MCPError

If the server returns an error.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
async def list_resources(self) -> list[Resource]:
    """Retrieve resources that are currently present on the server.

    Note:
    - We don't cache resources as they might change.
    - We also don't subscribe to resource changes to avoid complexity.

    Raises:
        MCPError: If the server returns an error.
    """
    async with self:  # Ensure server is running
        if not self.capabilities.resources:
            return []
        try:
            result = await self._client.list_resources()
        except mcp_exceptions.McpError as e:
            raise MCPError.from_mcp_sdk(e) from e
    return [Resource.from_mcp_sdk(r) for r in result.resources]

list_resource_templates async

list_resource_templates() -> list[ResourceTemplate]

Retrieve resource templates that are currently present on the server.

Raises:

Type Description
MCPError

If the server returns an error.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
561
562
563
564
565
566
567
568
569
570
571
572
573
574
async def list_resource_templates(self) -> list[ResourceTemplate]:
    """Retrieve resource templates that are currently present on the server.

    Raises:
        MCPError: If the server returns an error.
    """
    async with self:  # Ensure server is running
        if not self.capabilities.resources:
            return []
        try:
            result = await self._client.list_resource_templates()
        except mcp_exceptions.McpError as e:
            raise MCPError.from_mcp_sdk(e) from e
    return [ResourceTemplate.from_mcp_sdk(t) for t in result.resourceTemplates]

read_resource async

read_resource(
    uri: str,
) -> str | BinaryContent | list[str | BinaryContent]
read_resource(
    uri: Resource,
) -> str | BinaryContent | list[str | BinaryContent]
read_resource(
    uri: str | Resource,
) -> str | BinaryContent | list[str | BinaryContent]

Read the contents of a specific resource by URI.

Parameters:

Name Type Description Default
uri str | Resource

The URI of the resource to read, or a Resource object.

required

Returns:

Type Description
str | BinaryContent | list[str | BinaryContent]

The resource contents. If the resource has a single content item, returns that item directly.

str | BinaryContent | list[str | BinaryContent]

If the resource has multiple content items, returns a list of items.

Raises:

Type Description
MCPError

If the server returns an error.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
async def read_resource(
    self, uri: str | Resource
) -> str | messages.BinaryContent | list[str | messages.BinaryContent]:
    """Read the contents of a specific resource by URI.

    Args:
        uri: The URI of the resource to read, or a Resource object.

    Returns:
        The resource contents. If the resource has a single content item, returns that item directly.
        If the resource has multiple content items, returns a list of items.

    Raises:
        MCPError: If the server returns an error.
    """
    resource_uri = uri if isinstance(uri, str) else uri.uri
    async with self:  # Ensure server is running
        try:
            result = await self._client.read_resource(AnyUrl(resource_uri))
        except mcp_exceptions.McpError as e:
            raise MCPError.from_mcp_sdk(e) from e

    return (
        self._get_content(result.contents[0])
        if len(result.contents) == 1
        else [self._get_content(resource) for resource in result.contents]
    )

__aenter__ async

__aenter__() -> Self

Enter the MCP server context.

This will initialize the connection to the server. If this server is an MCPServerStdio, the server will first be started as a subprocess.

This is a no-op if the MCP server has already been entered.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
async def __aenter__(self) -> Self:
    """Enter the MCP server context.

    This will initialize the connection to the server.
    If this server is an [`MCPServerStdio`][pydantic_ai.mcp.MCPServerStdio], the server will first be started as a subprocess.

    This is a no-op if the MCP server has already been entered.
    """
    async with self._enter_lock:
        if self._running_count == 0:
            async with AsyncExitStack() as exit_stack:
                self._read_stream, self._write_stream = await exit_stack.enter_async_context(self.client_streams())
                client = ClientSession(
                    read_stream=self._read_stream,
                    write_stream=self._write_stream,
                    sampling_callback=self._sampling_callback if self.allow_sampling else None,
                    elicitation_callback=self.elicitation_callback,
                    logging_callback=self.log_handler,
                    read_timeout_seconds=timedelta(seconds=self.read_timeout),
                )
                self._client = await exit_stack.enter_async_context(client)

                with anyio.fail_after(self.timeout):
                    result = await self._client.initialize()
                    self._server_info = result.serverInfo
                    self._server_capabilities = ServerCapabilities.from_mcp_sdk(result.capabilities)
                    self._instructions = result.instructions
                    if log_level := self.log_level:
                        await self._client.set_logging_level(log_level)

                self._exit_stack = exit_stack.pop_all()
        self._running_count += 1
    return self

is_running property

is_running: bool

Check if the MCP server is running.

MCPServerStdio

Bases: MCPServer

Runs an MCP server in a subprocess and communicates with it over stdin/stdout.

This class implements the stdio transport from the MCP specification. See https://spec.modelcontextprotocol.io/specification/2024-11-05/basic/transports/#stdio for more information.

Note

Using this class as an async context manager will start the server as a subprocess when entering the context, and stop it when exiting the context.

Example:

from pydantic_ai import Agent
from pydantic_ai.mcp import MCPServerStdio

server = MCPServerStdio(  # (1)!
    'uv', args=['run', 'mcp-run-python', 'stdio'], timeout=10
)
agent = Agent('openai:gpt-4o', toolsets=[server])

  1. See MCP Run Python for more information.
Source code in pydantic_ai_slim/pydantic_ai/mcp.py
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
class MCPServerStdio(MCPServer):
    """Runs an MCP server in a subprocess and communicates with it over stdin/stdout.

    This class implements the stdio transport from the MCP specification.
    See <https://spec.modelcontextprotocol.io/specification/2024-11-05/basic/transports/#stdio> for more information.

    !!! note
        Using this class as an async context manager will start the server as a subprocess when entering the context,
        and stop it when exiting the context.

    Example:
    ```python {py="3.10"}
    from pydantic_ai import Agent
    from pydantic_ai.mcp import MCPServerStdio

    server = MCPServerStdio(  # (1)!
        'uv', args=['run', 'mcp-run-python', 'stdio'], timeout=10
    )
    agent = Agent('openai:gpt-4o', toolsets=[server])
    ```

    1. See [MCP Run Python](https://github.com/pydantic/mcp-run-python) for more information.
    """

    command: str
    """The command to run."""

    args: Sequence[str]
    """The arguments to pass to the command."""

    env: dict[str, str] | None
    """The environment variables the CLI server will have access to.

    By default the subprocess will not inherit any environment variables from the parent process.
    If you want to inherit the environment variables from the parent process, use `env=os.environ`.
    """

    cwd: str | Path | None
    """The working directory to use when spawning the process."""

    # last fields are re-defined from the parent class so they appear as fields
    tool_prefix: str | None
    log_level: mcp_types.LoggingLevel | None
    log_handler: LoggingFnT | None
    timeout: float
    read_timeout: float
    process_tool_call: ProcessToolCallback | None
    allow_sampling: bool
    sampling_model: models.Model | None
    max_retries: int
    elicitation_callback: ElicitationFnT | None = None

    def __init__(
        self,
        command: str,
        args: Sequence[str],
        *,
        env: dict[str, str] | None = None,
        cwd: str | Path | None = None,
        tool_prefix: str | None = None,
        log_level: mcp_types.LoggingLevel | None = None,
        log_handler: LoggingFnT | None = None,
        timeout: float = 5,
        read_timeout: float = 5 * 60,
        process_tool_call: ProcessToolCallback | None = None,
        allow_sampling: bool = True,
        sampling_model: models.Model | None = None,
        max_retries: int = 1,
        elicitation_callback: ElicitationFnT | None = None,
        id: str | None = None,
    ):
        """Build a new MCP server.

        Args:
            command: The command to run.
            args: The arguments to pass to the command.
            env: The environment variables to set in the subprocess.
            cwd: The working directory to use when spawning the process.
            tool_prefix: A prefix to add to all tools that are registered with the server.
            log_level: The log level to set when connecting to the server, if any.
            log_handler: A handler for logging messages from the server.
            timeout: The timeout in seconds to wait for the client to initialize.
            read_timeout: Maximum time in seconds to wait for new messages before timing out.
            process_tool_call: Hook to customize tool calling and optionally pass extra metadata.
            allow_sampling: Whether to allow MCP sampling through this client.
            sampling_model: The model to use for sampling.
            max_retries: The maximum number of times to retry a tool call.
            elicitation_callback: Callback function to handle elicitation requests from the server.
            id: An optional unique ID for the MCP server. An MCP server needs to have an ID in order to be used in a durable execution environment like Temporal, in which case the ID will be used to identify the server's activities within the workflow.
        """
        self.command = command
        self.args = args
        self.env = env
        self.cwd = cwd

        super().__init__(
            tool_prefix,
            log_level,
            log_handler,
            timeout,
            read_timeout,
            process_tool_call,
            allow_sampling,
            sampling_model,
            max_retries,
            elicitation_callback,
            id=id,
        )

    @classmethod
    def __get_pydantic_core_schema__(cls, _: Any, __: Any) -> CoreSchema:
        return core_schema.no_info_after_validator_function(
            lambda dct: MCPServerStdio(**dct),
            core_schema.typed_dict_schema(
                {
                    'command': core_schema.typed_dict_field(core_schema.str_schema()),
                    'args': core_schema.typed_dict_field(core_schema.list_schema(core_schema.str_schema())),
                    'env': core_schema.typed_dict_field(
                        core_schema.dict_schema(core_schema.str_schema(), core_schema.str_schema()),
                        required=False,
                    ),
                }
            ),
        )

    @asynccontextmanager
    async def client_streams(
        self,
    ) -> AsyncIterator[
        tuple[
            MemoryObjectReceiveStream[SessionMessage | Exception],
            MemoryObjectSendStream[SessionMessage],
        ]
    ]:
        server = StdioServerParameters(command=self.command, args=list(self.args), env=self.env, cwd=self.cwd)
        async with stdio_client(server=server) as (read_stream, write_stream):
            yield read_stream, write_stream

    def __repr__(self) -> str:
        repr_args = [
            f'command={self.command!r}',
            f'args={self.args!r}',
        ]
        if self.id:
            repr_args.append(f'id={self.id!r}')  # pragma: lax no cover
        return f'{self.__class__.__name__}({", ".join(repr_args)})'

    def __eq__(self, value: object, /) -> bool:
        return (
            super().__eq__(value)
            and isinstance(value, MCPServerStdio)
            and self.command == value.command
            and self.args == value.args
            and self.env == value.env
            and self.cwd == value.cwd
        )

__init__

__init__(
    command: str,
    args: Sequence[str],
    *,
    env: dict[str, str] | None = None,
    cwd: str | Path | None = None,
    tool_prefix: str | None = None,
    log_level: LoggingLevel | None = None,
    log_handler: LoggingFnT | None = None,
    timeout: float = 5,
    read_timeout: float = 5 * 60,
    process_tool_call: ProcessToolCallback | None = None,
    allow_sampling: bool = True,
    sampling_model: Model | None = None,
    max_retries: int = 1,
    elicitation_callback: ElicitationFnT | None = None,
    id: str | None = None
)

Build a new MCP server.

Parameters:

Name Type Description Default
command str

The command to run.

required
args Sequence[str]

The arguments to pass to the command.

required
env dict[str, str] | None

The environment variables to set in the subprocess.

None
cwd str | Path | None

The working directory to use when spawning the process.

None
tool_prefix str | None

A prefix to add to all tools that are registered with the server.

None
log_level LoggingLevel | None

The log level to set when connecting to the server, if any.

None
log_handler LoggingFnT | None

A handler for logging messages from the server.

None
timeout float

The timeout in seconds to wait for the client to initialize.

5
read_timeout float

Maximum time in seconds to wait for new messages before timing out.

5 * 60
process_tool_call ProcessToolCallback | None

Hook to customize tool calling and optionally pass extra metadata.

None
allow_sampling bool

Whether to allow MCP sampling through this client.

True
sampling_model Model | None

The model to use for sampling.

None
max_retries int

The maximum number of times to retry a tool call.

1
elicitation_callback ElicitationFnT | None

Callback function to handle elicitation requests from the server.

None
id str | None

An optional unique ID for the MCP server. An MCP server needs to have an ID in order to be used in a durable execution environment like Temporal, in which case the ID will be used to identify the server's activities within the workflow.

None
Source code in pydantic_ai_slim/pydantic_ai/mcp.py
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
def __init__(
    self,
    command: str,
    args: Sequence[str],
    *,
    env: dict[str, str] | None = None,
    cwd: str | Path | None = None,
    tool_prefix: str | None = None,
    log_level: mcp_types.LoggingLevel | None = None,
    log_handler: LoggingFnT | None = None,
    timeout: float = 5,
    read_timeout: float = 5 * 60,
    process_tool_call: ProcessToolCallback | None = None,
    allow_sampling: bool = True,
    sampling_model: models.Model | None = None,
    max_retries: int = 1,
    elicitation_callback: ElicitationFnT | None = None,
    id: str | None = None,
):
    """Build a new MCP server.

    Args:
        command: The command to run.
        args: The arguments to pass to the command.
        env: The environment variables to set in the subprocess.
        cwd: The working directory to use when spawning the process.
        tool_prefix: A prefix to add to all tools that are registered with the server.
        log_level: The log level to set when connecting to the server, if any.
        log_handler: A handler for logging messages from the server.
        timeout: The timeout in seconds to wait for the client to initialize.
        read_timeout: Maximum time in seconds to wait for new messages before timing out.
        process_tool_call: Hook to customize tool calling and optionally pass extra metadata.
        allow_sampling: Whether to allow MCP sampling through this client.
        sampling_model: The model to use for sampling.
        max_retries: The maximum number of times to retry a tool call.
        elicitation_callback: Callback function to handle elicitation requests from the server.
        id: An optional unique ID for the MCP server. An MCP server needs to have an ID in order to be used in a durable execution environment like Temporal, in which case the ID will be used to identify the server's activities within the workflow.
    """
    self.command = command
    self.args = args
    self.env = env
    self.cwd = cwd

    super().__init__(
        tool_prefix,
        log_level,
        log_handler,
        timeout,
        read_timeout,
        process_tool_call,
        allow_sampling,
        sampling_model,
        max_retries,
        elicitation_callback,
        id=id,
    )

command instance-attribute

command: str = command

The command to run.

args instance-attribute

args: Sequence[str] = args

The arguments to pass to the command.

env instance-attribute

env: dict[str, str] | None = env

The environment variables the CLI server will have access to.

By default the subprocess will not inherit any environment variables from the parent process. If you want to inherit the environment variables from the parent process, use env=os.environ.

cwd instance-attribute

cwd: str | Path | None = cwd

The working directory to use when spawning the process.

MCPServerSSE

Bases: _MCPServerHTTP

An MCP server that connects over streamable HTTP connections.

This class implements the SSE transport from the MCP specification. See https://spec.modelcontextprotocol.io/specification/2024-11-05/basic/transports/#http-with-sse for more information.

Note

Using this class as an async context manager will create a new pool of HTTP connections to connect to a server which should already be running.

Example:

from pydantic_ai import Agent
from pydantic_ai.mcp import MCPServerSSE

server = MCPServerSSE('http://localhost:3001/sse')
agent = Agent('openai:gpt-4o', toolsets=[server])

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
class MCPServerSSE(_MCPServerHTTP):
    """An MCP server that connects over streamable HTTP connections.

    This class implements the SSE transport from the MCP specification.
    See <https://spec.modelcontextprotocol.io/specification/2024-11-05/basic/transports/#http-with-sse> for more information.

    !!! note
        Using this class as an async context manager will create a new pool of HTTP connections to connect
        to a server which should already be running.

    Example:
    ```python {py="3.10"}
    from pydantic_ai import Agent
    from pydantic_ai.mcp import MCPServerSSE

    server = MCPServerSSE('http://localhost:3001/sse')
    agent = Agent('openai:gpt-4o', toolsets=[server])
    ```
    """

    @classmethod
    def __get_pydantic_core_schema__(cls, _: Any, __: Any) -> CoreSchema:
        return core_schema.no_info_after_validator_function(
            lambda dct: MCPServerSSE(**dct),
            core_schema.typed_dict_schema(
                {
                    'url': core_schema.typed_dict_field(core_schema.str_schema()),
                    'headers': core_schema.typed_dict_field(
                        core_schema.dict_schema(core_schema.str_schema(), core_schema.str_schema()), required=False
                    ),
                }
            ),
        )

    @property
    def _transport_client(self):
        return sse_client  # pragma: no cover

    def __eq__(self, value: object, /) -> bool:
        return super().__eq__(value) and isinstance(value, MCPServerSSE) and self.url == value.url

MCPServerHTTP deprecated

Bases: MCPServerSSE

Deprecated

The MCPServerHTTP class is deprecated, use MCPServerSSE instead.

An MCP server that connects over HTTP using the old SSE transport.

This class implements the SSE transport from the MCP specification. See https://spec.modelcontextprotocol.io/specification/2024-11-05/basic/transports/#http-with-sse for more information.

Note

Using this class as an async context manager will create a new pool of HTTP connections to connect to a server which should already be running.

Example:

from pydantic_ai import Agent
from pydantic_ai.mcp import MCPServerHTTP

server = MCPServerHTTP('http://localhost:3001/sse')
agent = Agent('openai:gpt-4o', toolsets=[server])

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
@deprecated('The `MCPServerHTTP` class is deprecated, use `MCPServerSSE` instead.')
class MCPServerHTTP(MCPServerSSE):
    """An MCP server that connects over HTTP using the old SSE transport.

    This class implements the SSE transport from the MCP specification.
    See <https://spec.modelcontextprotocol.io/specification/2024-11-05/basic/transports/#http-with-sse> for more information.

    !!! note
        Using this class as an async context manager will create a new pool of HTTP connections to connect
        to a server which should already be running.

    Example:
    ```python {py="3.10" test="skip"}
    from pydantic_ai import Agent
    from pydantic_ai.mcp import MCPServerHTTP

    server = MCPServerHTTP('http://localhost:3001/sse')
    agent = Agent('openai:gpt-4o', toolsets=[server])
    ```
    """

MCPServerStreamableHTTP

Bases: _MCPServerHTTP

An MCP server that connects over HTTP using the Streamable HTTP transport.

This class implements the Streamable HTTP transport from the MCP specification. See https://modelcontextprotocol.io/introduction#streamable-http for more information.

Note

Using this class as an async context manager will create a new pool of HTTP connections to connect to a server which should already be running.

Example:

from pydantic_ai import Agent
from pydantic_ai.mcp import MCPServerStreamableHTTP

server = MCPServerStreamableHTTP('http://localhost:8000/mcp')
agent = Agent('openai:gpt-4o', toolsets=[server])

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
class MCPServerStreamableHTTP(_MCPServerHTTP):
    """An MCP server that connects over HTTP using the Streamable HTTP transport.

    This class implements the Streamable HTTP transport from the MCP specification.
    See <https://modelcontextprotocol.io/introduction#streamable-http> for more information.

    !!! note
        Using this class as an async context manager will create a new pool of HTTP connections to connect
        to a server which should already be running.

    Example:
    ```python {py="3.10"}
    from pydantic_ai import Agent
    from pydantic_ai.mcp import MCPServerStreamableHTTP

    server = MCPServerStreamableHTTP('http://localhost:8000/mcp')
    agent = Agent('openai:gpt-4o', toolsets=[server])
    ```
    """

    @classmethod
    def __get_pydantic_core_schema__(cls, _: Any, __: Any) -> CoreSchema:
        return core_schema.no_info_after_validator_function(
            lambda dct: MCPServerStreamableHTTP(**dct),
            core_schema.typed_dict_schema(
                {
                    'url': core_schema.typed_dict_field(core_schema.str_schema()),
                    'headers': core_schema.typed_dict_field(
                        core_schema.dict_schema(core_schema.str_schema(), core_schema.str_schema()), required=False
                    ),
                }
            ),
        )

    @property
    def _transport_client(self):
        return streamablehttp_client

    def __eq__(self, value: object, /) -> bool:
        return super().__eq__(value) and isinstance(value, MCPServerStreamableHTTP) and self.url == value.url

load_mcp_servers

load_mcp_servers(
    config_path: str | Path,
) -> list[
    MCPServerStdio | MCPServerStreamableHTTP | MCPServerSSE
]

Load MCP servers from a configuration file.

Environment variables can be referenced in the configuration file using: - ${VAR_NAME} syntax - expands to the value of VAR_NAME, raises error if not defined - ${VAR_NAME:-default} syntax - expands to VAR_NAME if set, otherwise uses the default value

Parameters:

Name Type Description Default
config_path str | Path

The path to the configuration file.

required

Returns:

Type Description
list[MCPServerStdio | MCPServerStreamableHTTP | MCPServerSSE]

A list of MCP servers.

Raises:

Type Description
FileNotFoundError

If the configuration file does not exist.

ValidationError

If the configuration file does not match the schema.

ValueError

If an environment variable referenced in the configuration is not defined and no default value is provided.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
def load_mcp_servers(config_path: str | Path) -> list[MCPServerStdio | MCPServerStreamableHTTP | MCPServerSSE]:
    """Load MCP servers from a configuration file.

    Environment variables can be referenced in the configuration file using:
    - `${VAR_NAME}` syntax - expands to the value of VAR_NAME, raises error if not defined
    - `${VAR_NAME:-default}` syntax - expands to VAR_NAME if set, otherwise uses the default value

    Args:
        config_path: The path to the configuration file.

    Returns:
        A list of MCP servers.

    Raises:
        FileNotFoundError: If the configuration file does not exist.
        ValidationError: If the configuration file does not match the schema.
        ValueError: If an environment variable referenced in the configuration is not defined and no default value is provided.
    """
    config_path = Path(config_path)

    if not config_path.exists():
        raise FileNotFoundError(f'Config file {config_path} not found')

    config_data = pydantic_core.from_json(config_path.read_bytes())
    expanded_config_data = _expand_env_vars(config_data)
    config = MCPServerConfig.model_validate(expanded_config_data)

    servers: list[MCPServerStdio | MCPServerStreamableHTTP | MCPServerSSE] = []
    for name, server in config.mcp_servers.items():
        server.id = name
        server.tool_prefix = name
        servers.append(server)

    return servers